Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects.
نویسندگان
چکیده
Craniofacial injuries can result from trauma, tumor ablation, or infection and may require multiple surgical revisions. To address the challenges associated with treating craniofacial bone defects, an ideal material should have the ability to fit complex defects (i.e. be conformable), provide temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of biologics. In this study, we evaluated the ability of injectable lysine-derived polyurethane (PUR)/allograft biocomposites to promote bone healing in critical-size rabbit calvarial defects. The biocomposites exhibited favorable injectability, characterized by a low yield stress to initiate flow of the material and a high initial viscosity to minimize the adverse phenomena of extravasation and filter pressing. After injection, the materials cured within 10-12 min to form a tough, elastomeric solid that maintained mechanical integrity during the healing process. When injected into a critical-size calvarial defect in rabbits, the biocomposites supported ingrowth of new bone. The addition of 80 µg mL(-1) recombinant human bone morphogenetic protein-2 (rhBMP-2) enhanced new bone formation in the interior of the defect, as well as bridging of the defect with new bone. These observations suggest that injectable reactive PUR/allograft biocomposites are a promising approach for healing calvarial defects by providing both mechanical stability as well as local delivery of rhBMP-2.
منابع مشابه
The effect of freeze-dried bone allograft and partially demineralized freeze-dried bone allograft on regeneration of rabbit calvarial bone defects: A Histological and histomorphometric study
Background and Aims: Reconstruction of osseous defects is one of the ideal goals of periodontal treatments and dental implant therapy. Different biomaterials have been used for this purpose and many studies have tried to compare and introduce the best ones. The present study aimed to evaluate the effect of PDFDB (Partially Demineralized Freeze-Dried Bone Graft) and FDBA (Freeze Dried Bone Allog...
متن کاملMicro-CT Analysis of Bone Healing in Rabbit Calvarial Critical-Sized Defects with Solid Bioactive Glass, Tricalcium Phosphate Granules or Autogenous Bone
OBJECTIVES The purpose of the present study was to evaluate bone healing in rabbit critical-sized calvarial defects using two different synthetic scaffold materials, solid biodegradable bioactive glass and tricalcium phosphate granules alongside solid and particulated autogenous bone grafts. MATERIAL AND METHODS Bilateral full thickness critical-sized calvarial defects were created in 15 New ...
متن کاملAllogenic Bone Graft Enriched by Periosteal Stem Cell and Growth Factors for Osteogenesis in Critical Size Bone Defect in Rabbit Model: Histopathological and Radiological Evaluation
Background & Objective: This study aimed to investigate the effect of decellularized allogeneic bone graft enriched by periosteal stem cells (PSCs) and growth factors on the bone repair process in a rabbit model, which could be used in many orthopedic procedures. Methods: In this experimental study, a critical size defect (CSD) (10 mm) was created in the ...
متن کاملEvaluation of the effects of autologous adipose derived mesenchymal stem cells in combination with polyacrylamide hydrogel and nanohydroxyapatite scaffolds on healing in rabbit critical-sized radial bone defect model
Objective: In this study, the bone regeneration ability of polyacrylamide hydrogel and nanohydroxyapatite scaffolds (PAAH/NHA) and stem cells derived from adipose tissue (ADSCs) in the healing of critical sized bone defects in rabbit radius were assessed. Animals and procedures: 12 New Zealand white male rabbits were divided into 3 groups. The rabbits were anesthetized and 15 mm bone def...
متن کاملInjectable Biocomposites for Bone Healing in Rabbit Femoral Condyle Defects
A novel biomimetic bone scaffold was successfully prepared in this study, which was composed of calcium sulfate hemihydrate (CSH), collagen and nano-hydroxyapatite (nHAC). CSH/nHAC was prepared and observed with scanning electron microscope and rhBMP-2 was introduced into CSH/nHAC. The released protein content from the scaffold was detected using high performance liquid chromatography at predet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical materials
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2012